Víctor Zavala – «Curso de Optimización Bayesiana»

El Programa de Doctorado en Ingeniería Industrial organiza, los próximos 15 y 16 de mayo, un curso de optimización bayesiana. Será impartido en horario de 10hrs. a 13hrs. en el Seminario del Departamento de Ingeniería de Sistemas y Automática por el profesor Víctor Zavala (Universidad de Wisconsin).

Los ejercicios y/o ejemplos se realizarán en Python a través de Google Colab (en la web). Es necesario llevar un ordenador portátil.

A continuación, se detallan los materiales, el horario y los contenidos del curso.

Lecture Materials

All lecture materials (slides and Jupyter notebooks) can be found here.

Lecture Schedule

May 15th

  • 10:00-10:45 - Motivation and Applications of Bayesian Optimization

This will provide a high-level perspective on BO and showcase diverse applications in energy, controls, materials, and chemistry.

  • 11:00-11:45 - Data-Driven Modeling using Kernel Models 

This will in provide a basic perspective on how kernel methods can be used to build models from data and capture strong nonlinearity. Python examples will be provided to illustrate concepts.

  • 12:00-13:00 - Data-Driven Modeling using Gaussian Process Models

This will in provide a basic perspective on how GP models are a class of kernel methods that facilitate data-driven modeling and quantification of uncertainty. Python examples will be provided to illustrate concepts.

May 16th

  • 10:00-10:45 - Basic Bayesian Optimization
    This will provide basic concepts of BO (exploration vs. exploitation and acquisition functions based on GP models). 
  • 11:00 - 12:00 - Tutorial Examples  

This will provide tutorial examples on how to implement BO using standard Python tools.

  • 12:15 - 13:00 - Advanced Bayesian Optimization

This will discussed advanced variants of BO that combine GP and physical knowledge, to use parametric models (e.g., neural networks), and to conduct batch sampling.

Publicado en especificas.